Technical Aspects:

Compatible with available low-cost resource constraint edge platforms and cameras
Appropriate settings to capture PPG from the subjects
Facilitate off-line and real-time operations, and stable rPPG system
Development of robust model to extract PPG

1. **Technical Aspects:**
 - Appropriate settings to capture PPG from the subjects
 - Facility offline and real-time operations, and stable rPPG system
 - Development of robust model to extract PPG

2. **Scientific Aspects:**
 - Development of robust model to extract PPG
 - Effectively scaling down the model for resource-efficient operation inside edge devices

Methodology

- Collection of rPPG dataset
 - Camera variations
 - Subject variations
 - Environment variations
- Train Deep-Learning based model to infer rPPG from raw video data
- Compress the model (Pruning, quantization)
- Prepare Edge Compatible format.
- Pipeline the rPPG system inside Edge device

Experiment and Results

- **Experimental Dataset**
 - UBFC-rPPG
 - MERL-rPPG
 - MPSC-rPPG

- **Device Compatibility**
 - Jetson Nano
 - Raspberry Pi
 - Google Coral Dev-Board

- **Metrics**
 - rPPG accuracy
 - System parameters
 - Memory Occupancy
 - Power Consumption

Summary and Conclusion

- We develop edge compatible rPPG devices for ubiquitous HR monitoring.
- We develop robust rPPG detection model utilizing Deep learning based data-driven model.
- We propose rPPG domain specific pruning to scale down computational heavy deep learning model.
- We test our approach on two publicly available dataset and our own-collected MPSC dataset.
- We test the system performance under varying conditions like camera movements, lighting variations, fps variations.
- We thoroughly test our system stability for time, power, memory performance and benchmark our system.
- We open-source our dataset and codes to facilitate further research.

References and Publications

This research is supported by U.S. Army Grant No. W911NF2120076