Motivation and Broad Idea

Zero-Shot Learning and Verb Attribute Embeddings

<table>
<thead>
<tr>
<th>Translucence</th>
<th>Input</th>
<th>Model</th>
<th>Time</th>
<th>Social</th>
<th>Database</th>
<th>Effect on Arguments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>7</td>
<td>1</td>
<td>9</td>
<td>0</td>
<td>8</td>
</tr>
</tbody>
</table>

Sample verb-attributes [2] for the activity verb “spray” from the Kitchen dataset

Training with Short-Duration Macro-Activities

Algorithm 1 Training the Zero-Shot Model

Input: Training Set \(V = \{(u, a) : u \in X, a \in A\} \), where \(X \) is the accelerometer data and \(A \) is the set of short-duration macro-activity labels.

Output Trained zero-shot model \(Z \):

1. \((S, A) = \text{redim_labelswise}(V, d) \) (We fix \(d = 2 \). Here, \(S \), which is the transformed accelerometer data with dimensions reduced to \(d \).)
2. \(Z = [] \)
3. for \(i = 1 \) to \(N \) \(do \)
 4. \(Z[i] = \text{train_model}(X, S, \text{verb_attribute}(A)(i, :)) \)
5. end for
6. return \(Z \)

Finding Unknown Micro-Activities

Finding zero-shot model as an array of classifiers

Algorithm 2 Predicting Micro-Activities

Input Accelerometer data \(T'_{t+\tau} \) for activities where \(\tau \geq 10s \) and the trained zero-shot model \(Z \).

Output Predicted micro-activities \(M_{t+\tau}^f \), where \(M_{t+\tau}^f = \{m_1, m_2, \ldots, m_n\} \), where \(n \) is the total number of micro-activities performed by the subject in the time duration \([t, t+\tau] \).

1. \(\mathbf{W}_{t+\tau}^f = \text{change_point}(T'_{t+\tau}) \) (Here, \(\mathbf{W}_{t+\tau} \) is the set of change-point windows.)
2. \(M_{t+\tau}^f = \{\} \)

3. for each change window \(\omega \) in \(\mathbf{W}_{t+\tau}^f \) \(do \)

4. \(J_\omega = \text{average accelerometer data fro the window } \omega \)
5. \(\mathcal{J}_\omega = \text{redim}(J_\omega, d) \) (We fix \(d = 2 \))
6. \(m_\omega = \text{predict_micro_activities}(Z, \mathcal{J}_\omega) \) (Here, \(m_\omega \) is the micro-activity predicted for the change-window \(\omega \))
7. \(M_{t+\tau}^f = M_{t+\tau}^f \cup \{m_\omega\} \)
8. end for
9. return \(M_{t+\tau}^f \)

Demonstration of Labeling Performance

References

Contact

- Website: https://sites.google.com/view/soumyait/home
- Twitter: https://twitter.com/Soumya14848812
- Email: soumyachat@iitkgp.ac.in
- Alternate Email: soumya@gmail.com