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Motivation and Broad Idea

Training Module
Given Labels
|

-----J ..................

x

: ¥ v
Segregation Windowing & Teairing :
Dogeeeeees and Creating Dimensionality f------coeeeememnennnnee. :
L Training Set Reduction 2
= e 7R
c l ‘= ZeroShor v B
i = - I Model (2) :l o a
' Change-Point D\I_dem!vmg.& rediction, 2 ;
, Do Detection |menS|o_naI|ty A L 4 :-.----»ﬂ o
: Reduction : ¥ W E<
] Prediction Module 2=, =00 S
1. Automating the complicated tasks of getting annotations for micro-activities
2. Challenges: Number and characteristics of the micro-activities may not be known apriori
3. Primary Idea: Using the short-duration macro-activity labels along with zero-shot learning
4. Experiments done on Kitchen dataset [1] containing complex activities of daily living
Zero-Shot Learning and Verb Attribute Embeddings
Transitivity | Aspect | Motion | Time | Social Arms | Head Bogzlg) :rts Torso | Other Effect on Arguments
| | | 3 3 | 0 | 0 0 0 0 0 | 0 0 0 | | 0 0 | | 0

Sample verb-attributes [2] for the activity verb “spray” from the Kitchen dataset

Training with Short-Duration Macro-Activities

Algorithm 1 Training the Zero-Shot Model

Input: Training Set V = {(u, a) u € Z,a € A}, where 7 is the
accelerometer data and A is the set of short-duration macro-activity labels.
Output Trained zero-shot model Z

1: (S, A) red_dimen_labelwise (V, d) {We fix d = 2. Here, S, which is the
transformed accelerometer data with dimensions reduced to d.}

2 L= ]

3: for i = 1 to N do

4. Z|i] = train_model(R;, S, verb_attribute(.A)[:,i])
5: end for

6: return Z
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Fig. Zero-shot model as an array of classifiers

Finding Unknown Micro-Activities
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Fig. Change-points detected with penalty 50

1. Unsupervised change-point detection can help locate the activity boundaries

2. Each activity window can potentially represent one micro-activity

3. Use window-based change-point detection [3] with window-size = 100 and RBF kernel
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Generation of Micro-Activity Annotations

Algorithm 2 Predicting Micro-Activities
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Input Accelerometer data for activities where 7 > 10s and the trained zero-
shot model Z.

Outppt Predicted micro-activit.ies Mi +r where Mi = {m1, ma, ..., m:n},
where m 1s the total number of micro-activities performed by the subject in the time

duration [t,t + 7).
1: Wi, . = change_point(Zy ) {Here, Wy _ is the set of change-point windows.}

2: Mi—l—'r = {}

3: for each change window w in W3 _ do

4: J., = average accelerometer data fro the window w

5: Jw = red_dimen (J,, d) {We fix d = 2.}

6: m., = predict_micro_activities (Z, J.) {Here, m,, is the micro-activity
predicted for the change-window w.}

7o M, =M, U{m.}

8: end for

9

. return M i

Accelerometer across change-point windows is used as an input to the zero-shot model
Output is a set of micro-activities in the form of attribute embeddings

Micro-activities defined by observing the closest known verbs in the embedding space
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Limitations: Unnecessary verbs may appear due to hubness

Demonstration of Labeling Performance
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